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• Enormous range of variability in the images for a 
given object category, eg. “foxes”

• Enormous objective uncertainty regarding image 
features present for any given exemplar

Challenge of complexity in 
natural image input
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How to learn to be 
maximally effective across a 

broad range of tasks?
• Need generative “world model” that can account for 

previously unexperienced combinations of objects, 
background, lighting, pose, ...

• Need efficient selection of critical diagnostic features to 
index object classes that will generalize across all within-class 
instances

• Learning object categories

• The challenge of learning from a small number of examples
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Mechanisms for flexible recognition

• Generative mechanisms: “Analysis by 
Synthesis”

Yuille, A., & Kersten, D. (2006). Vision as Bayesian 
inference: analysis by synthesis? Trends Cogn Sci, 10(7), 

301-308. 
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For recognition, analysis by 
synthesis useful when:

• Segmentation in cluttered scenes

• Transformations that are computationally difficult to 
do bottom-up, e.g.

‣ orientation in 3D depth

‣ articulations, e.g. scissors

‣ occlusion

• Competing/interacting object property/scene 
hypotheses
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Figure 5: Top left: Input image. Top right: Bottom-up proposals for text and faces are shown

by boxes. A face is “hallucinated” in a tree. Bottom centre: Overall segmentation (bottom left),

Detection of letters and faces. Bottom right: Synthesised image

There is evidence that reliable diagnostic information for certain categories is available from very

simple image measurements [35, 32], and that humans make certain categorical decisions sufficiently

fast to preclude a verification loop [40](but see [41] and [42]).

“Where do the generative models come from?”

Ideally the generative models, the discriminative models, and the stochastic grammar would all

be learnt from natural images. This is not difficult in principle because, as discussed in Griffiths

and Yuille, learning the model from data is simply another example of statistical inference. The

Helmholtz machine [43] gives an illustration of how a generative model, and an inference algorithm,

can be learnt. This approach, however, has been applied only to simple visual stimuli. Similarly

Friston [16] suggests learning models using the Expectation-Maximization algorithm. Although

this is a useful metaphor, the challenge is to see whether this idea can be translated to algorithms

that can deal with the complexities of natural images.

Learning generative and discriminative models is an extremely difficult problem in practice

due to the large dimensionality of natural images. There has recently, however, been dramatic

progress on the similar, but arguably simpler, problem of learning a stochastic grammar for natural

languages (see article by Chater and Manning). At present, different components of the image

parsing model are learnt individually. For example, the discriminative models for text and faces

are trained using labelled examples of “face”, “text”, and “non-face”, “non-text”. Similarly the

8

Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005). 
Image Parsing: Unifying Segmentation, 
Detection and Recognition. IJCV, 63(2).
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Strategies

• Generative mechanisms

• provide flexibility

• ...BUT computational/behavioral speed and 
accuracy requires effective diagnostic 
features to deal with the enormous with-
class variation within a pattern/object 
category
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“Discriminative models”

Need to learn features (“index features”) to 
support reliable if not perfect first, bottom-up 
pass
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How to learn features to 
support a variety of actions, not 

just decisions about labels

• Size perception, e.g. for interception

• Material, e.g. for driving

• ...

• Object categorization

• Do discriminative features learned in one 
task transfer to another?
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Computational example: Learning 
informative features for a task

What do 
these 
scenes 
have in 
common?

With 
Evgeniy Bart
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“Up” curbs-- that require a step up
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“Up” curbs-- that require a step up
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Distinguish from 
Non- “up curbs”
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Distinguish from 
Non- “up curbs”

...that do not 
require a step
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Distinguish from 
Non- “up curbs”

...that do not 
require a step

But may require a different 
action
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Selecting diagnostic 
features

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate 
complexity and their use in classification. Nat Neurosci, 5(7), 682-687.

Figure 2: Examples of fragments selected automatically by the max-min
algorithm (see text).

image fragment F and a class C is given by:

I(C; F ) = H(C) − H(C|F ). (1)

Here H is the entropy, which represents the uncertainty. Mutual information
therefore measures the reduction in uncertainty about the presence of class C
given the fragment F [4]. Therefore, mutual information is a natural measure
of fragment usefulness.

Mutual information can be expressed in terms of the joint probability
distribution of C and F as follows:

I(C; F ) =
1∑

c,f=0

p(C = c, F = f) log
p(C = c, F = f)

p(C = c)p(F = f)
, (2)

where 1 or 0 values indicate the presence or the absence, respectively, of the
fragment and the class. This joint distribution is estimated from training
examples of class and non-class images.

To determine the presence of a given fragment F in an image, the frag-
ment is compared to the image at all relevant locations by using a similarity
measure such as normalized cross-correlation. Normalized cross-correlation
is given by

NCC(p, F ) =
1

N

∑
x,y(p(x, y) − p)(F (x, y) − F )

σpσF

. (3)

Here F (x, y) is the fragment, p(x, y) is an image patch of the same size as F ,
N is the number of pixels in the fragment, p, F are the means and σp, σF are
the standard deviations of the intensities of p and F . When the correlation
at some location exceeds a pre-determined threshold θF , the fragment is
considered present, or active, in the image.

As the threshold θF , used for the fragment F , is increased, fewer instances
of F will be detected. The threshold thus affects the frequency of detecting

2

the fragment F and therefore its mutual information (eq. (2)). Therefore,
the optimal value for the threshold θF is the one that maximizes the infor-
mation delivered by the fragment about the class. The optimal threshold is
determined automatically for each fragment during training.

The next step is to select a bank B of n fragments B = {F1, . . . , Fn} with
the highest mutual information about the class C. Since evaluating joint
distributions of multiple variables is impractical, a greedy iterative approx-
imation can be used. The selection process is initialized by identifying the
fragment F1 with the highest mutual information. Fragments are then added
one by one, until the gain in mutual information is small, or until a limit on
the set size n is reached. To expand a size-k fragment set B = {F1, . . . , Fk}
to size k +1, a new fragment Fk+1 is selected that adds the maximal amount
of new information to the set. Formally, the conditional mutual information
between Fk+1 and the class given the current fragment set must be maxi-
mized: Fk+1 = arg max I(C; Fk+1|B). Estimating I(C; Fk+1|B) still depends
on multiple fragments. The term I(C; Fk+1|B) can be conveniently approxi-
mated by minFi∈B I(C; Fk+1|Fi). This term involves just two fragments and
can be computed efficiently from the training data. The approximation es-
sentially takes into account correlations between pairs of fragments, but not
higher order interactions. It ensures that the new fragment Fk+1 is informa-
tive, and that the information it contributes is not contained in any of the
previously selected fragments. Simulations comparing this approximation to
more complex methods confirmed that for different object classes the use of
higher-order statistical measures does not improve significantly the selected
set of fragments.

In summary, the overall selection process seeks to maximize the amount
of information about the class contained by a limited number of informative
fragments that are as independent as possible. The overall algorithm for
selection can be summarized as:

F1 = arg max
F

I(C; F );

Fk+1 = arg max
F

min
i

I(C; F |Fi). (4)

The second stage determines the contribution of a fragment F by finding
the most similar fragment already selected (this is the min stage) and then
selects the new fragment with the largest contribution (the max stage). The
full computation is therefore called the max-min selection. Examples of frag-
ments selected automatically by the max-min algorithm are shown in Figure

3
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Learning based on informative 
fragments for the task

With Evgeniy Bart

•Find fragments that 
maximize mutual 
information (Ullman et al., 
2002; Bart et al, 2004)

• Detect “up curbs” from 
an approach angle that 
requires a step
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Learning object categories
Do image features (fragments) that maximize mutual 
information predict the features that human observers 
learn to use?

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object Categories. 
Curr Biol. 18, 597-601

Need novel object classes with small 
within-class variation and slightly larger 

between-class variation

Virtual phylogenesis of digital embryos
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Digital embryo growth

http://www.psych.ndsu.nodak.edu/brady/downloads.html
Prof. Mark Brady
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Digital embryo growth

http://www.psych.ndsu.nodak.edu/brady/downloads.html
Prof. Mark Brady
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Virtual Phylogenesis
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Training

A B
A or B?
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Testing
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Fragments
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Results

Wednesday, December 1, 2010



Wednesday, December 1, 2010



Transfer of skill?

• For new previously unseem exemplars?

• Yes. Maximizing mutual information seeks 
to provide an efficient set of features that 
are shared within a class, but at the same 
time most effective at discriminating 
classes

A
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Transfer of skill?
• For new tasks that can be supported by the 

same discriminative features?

• Yes.

A

B

Big digitial 
embryo

Little digitial 
embryo

Classification training 
transfer to  this?
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Transfer of skill?

A B

Learn A vs. B

C

Test A vs. C
Not effective transfer to 

new category C

Because humans learn to 
select the diagnostic 
features for A vs. B
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General limitations

• Requires visual coherency

• Not straightforward to apply to conditions 
with clutter, background variations
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Summing up

• Analysis-by-synthesis works best with good 
bottom-up processing

• Humans and machines need to learn diagnostic 
features that can rapidly and reliably support a 
variety of tasks

• selecting features that maximize mutual 
information provide one way to do this
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