Learning object categories for efficient bottom-up recognition

Daniel Kersten Psychology Department, University of Minnesota

kersten.org

Supported by ONR N 00014-07-1-0937

Wednesday, December 1, 2010

Challenge of complexity in natural image input

- Enormous range of variability in the images for a given object category, eg. "foxes"
- Enormous objective uncertainty regarding image features present for any given exemplar

How to learn to be maximally effective across a broad range of tasks?

- Need generative "world model" that can account for previously unexperienced combinations of objects, background, lighting, pose, ...
- Need efficient selection of critical diagnostic features to index object classes that will generalize across all within-class instances
- Learning object categories
- The challenge of learning from a small number of examples

Mechanisms for flexible recognition

Generative mechanisms: "Analysis by Synthesis"

Yuille, A., & Kersten, D. (2006). Vision as Bayesian inference: analysis by synthesis? Trends Cogn Sci, 10(7), 301-308.

For recognition, analysis by synthesis useful when:

- Segmentation in cluttered scenes
- Transformations that are computationally difficult to do bottom-up, e.g.
 - orientation in 3D depth
 - articulations, e.g. scissors
 - occlusion
- Competing/interacting object property/scene hypotheses

Three models: text, faces, texture

Input

Three models: text, faces, texture

Input

Three models: text, faces, texture

Input

Three models: text, faces, texture

Input

Three models: text, faces, texture

Input

Strategies

- Generative mechanisms
 - provide flexibility
- ...BUT computational/behavioral speed and accuracy requires effective diagnostic features to deal with the enormous withclass variation within a pattern/object category

"Discriminative models"

Bottom-up

Need to learn features ("index features") to support reliable if not perfect first, bottom-up pass

How to learn features to support a variety of actions, not just decisions about labels

- Size perception, e.g. for interception
- Material, e.g. for driving
- ...
- Object categorization
 - Do discriminative features learned in one task transfer to another?

How to learn features to support a variety of actions, not just decisions about labels

- Size perception, e.g. for interception
- Material, e.g. for driving
- •
- Object categorization
 - Do discriminative features learned in one task transfer to another?

Computational example: Learning informative features for a task

What do these scenes have in common?

Wednesday, December 1, 2010

With

"Up" curbs-- that require a step up

"Up" curbs-- that require a step up

Distinguish from Non-"up curbs"

Distinguish from Non- "up curbs"

...that do not require a step

Distinguish from Non- "up curbs"

...that do not require a step

Selecting diagnostic features

$$I(C;F) = H(C) - H(C|F)$$

$$F_1 = \arg \max_F I(C; F);$$

$$F_{k+1} = \arg \max_F \min_i I(C; F | F_i)$$

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nat Neurosci, 5(7), 682-687.

Learning based on informative fragments for the task

- Find fragments that maximize mutual information (Ullman et al., 2002; Bart et al, 2004)
- Detect "up curbs" from an approach angle that requires a step

Learning object categories

Do image features (fragments) that maximize mutual information predict the features that human observers learn to use?

Need novel object classes with small within-class variation and slightly larger between-class variation

Virtual phylogenesis of digital embryos

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object Categories. Curr Biol. 18, 597-601

Digital embryo growth

Prof. Mark Brady http://www.psych.ndsu.nodak.edu/brady/downloads.html

Wednesday, December 1, 2010

Digital embryo growth

Prof. Mark Brady http://www.psych.ndsu.nodak.edu/brady/downloads.html

Virtual Phylogenesis

Training A or B? A В

Test Object

Sample Object

Sample Object

Fragments

Results

Transfer of skill?

- For new previously unseem exemplars?
 - Yes. Maximizing mutual information seeks to provide an efficient set of features that are shared within a class, but at the sam time most effective at discriminating classes

Transfer of skill?

• For new tasks that can be supported by the same discriminative features?

Little digitial embryo

Classification training transfer to this?

Transfer of skill?

select the diagnostic features for A vs. B

General limitations

- Requires visual coherency
- Not straightforward to apply to conditions with clutter, background variations

Summing up

- Analysis-by-synthesis works best with good bottom-up processing
- Humans and machines need to learn diagnostic features that can rapidly and reliably support a variety of tasks
 - selecting features that maximize mutual information provide one way to do this