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Challenge of complexity in
natural image input

® Enormous range of variability in the images for a
given object category, eg.“foxes”

® Enormous objective uncertainty regarding image
features present for any given exemplar
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How to learn to be
maximally effective across a
broad range of tasks!?

® Need generative “world model” that can account for
previously unexperienced combinations of objects,
background, lighting, pose, ...

® Need efficient selection of critical diagnostic features to
index object classes that will generalize across all within-class
instances

® |earning object categories

® The challenge of learning from a small number of examples
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Mechanisms for flexible recognition

® (Generative mechanisms:“Analysis by

Synthesis”
Image Residual . Decision
° Compare Feature Hypothesis
" images ™| extraction ™ refinement ’
A

Hypothesis

"Render”

Synthesized image

Bottom-up / Top-down

Yuille,A., & Kersten, D. (2006).Vision as Bayesian
inference: analysis by synthesis? Trends Cogn Sci, 10(7),
301-308.
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For recognition, analysis by
synthesis useful when:

® Segmentation in cluttered scenes

® Transformations that are computationally difficult to
do bottom-up, e.g.

» orientation in 3D depth
» articulations, e.g. scissors
» occlusion
® Competing/interacting object property/scene

hypotheses
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Computational
Example

Three models: text, faces,

texture
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Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005).

Image Parsing: Unifying Segmentation,
Detection and Recognition. IJCV, 63(2).
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Strategies

® (Generative mechanisms
® provide flexibility

® _.BUT computational/behavioral speed and
accuracy requires effective diagnostic
features to deal with the enormous with-
class variation within a pattern/object
category
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“Discriminative models”

Imaqge Compare
i Feature with ,.i arei i
™| oxtraction - ST »- Decision
reatures
Bottom-up

Need to learn features (“index features™) to
support reliable if not perfect first, bottom-up
pass
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How to learn features to
support a variety of actions, not
just decisions about labels

® Size perception, e.g. for interception
® Material, e.g. for driving

® ..

® Object categorization

® Do discriminative features learned in one
task transfer to another?
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Computational example: Learning
informative features for a task

these
scenes
have in
common!

With
Evgeniy Bart



“Up” curbs-- that require a step up
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Distinguish from
Non- “up curbs”




Distinguish from
Non- “up curbs”
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Distinguish from
Non- “up curbs”

...that do not

e ERRZING
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Selecting diagnostic
features

(G F) = H(C) = H(C|F)

Fy = argmgx](C’;F);
Fri1 = argmgxmin[(C’;F\Fi)

Ullman, S.,Vidal-Naquet, M., & Sali, E. (2002).Visual features of intermediate
complexity and their use in classification. Nat Neurosci, 5(7), 682-687/.
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Learning based on informative
fragments for the task

oFind fragments that
maximize mutual

information (Ullman et al,, ' — =
2002; Bart et al, 2004) ! ——
L
0.8 JJ
® Detect“up curbs” from v oo [
an approach angle that <
requires a step T
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False Positive Rate

With Evgeniy Bart
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Learning object categories

Do image features (fragments) that maximize mutual
information predict the features that human observers
learn to use!

Need novel object classes with small
within-class variation and slightly larger
between-class variation

Virtual phylogenesis of digital embryos

Hegde, |., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object Categories.
Curr Biol. 18,597-601
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Digital embryo growth

Prof. Mark Brady

http://www.psych.ndsu.nodak.edu/brady/downloads.htmi
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Virtual Phylogenesis
. Icosahedron
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Shape Class A Shape Class B Shape Class C
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Training

A or B?




Testing

Sample Object Test Object Sample Object

A Main Fragments Control Fragments
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Fragments

Main Fragments Control Fragments
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Results

IPControl Fragments
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Transfer of skill?

® For new previously unseem exemplars!?

® Yes. Maximizing mutual information seeks
to provide an efficient set of features that
are shared within a class, but at the sant

time most effective at discriminating
classes
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Transfer of skill?

® For new tasks that can be supported by the
same discriminative features?

® Yes.

Big digitial
embryo

Little digitial
embryo

Classification training
transfer to this!?
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Transfer of skill?

Not effective transfer to
new category C

Test A vs. C

Because humans learn to
select the diagnostic
features for A vs. B
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General limitations

® Requires visual coherency

® Not straightforward to apply to conditions
with clutter, background variations
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Summing up

® Analysis-by-synthesis works best with good
bottom-up processing

® Humans and machines need to learn diagnostic
features that can rapidly and reliably support a
variety of tasks

® selecting features that maximize mutual
information provide one way to do this
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